Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2722, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548744

RESUMEN

Enhancement of wakefulness is a prerequisite for adaptive behaviors to cope with acute stress, but hyperarousal is associated with impaired behavioral performance. Although the neural circuitries promoting wakefulness in acute stress conditions have been extensively identified, less is known about the circuit mechanisms constraining wakefulness to prevent hyperarousal. Here, we found that chemogenetic or optogenetic activation of GAD2-positive GABAergic neurons in the midbrain dorsal raphe nucleus (DRNGAD2) decreased wakefulness, while inhibition or ablation of these neurons produced an increase in wakefulness along with hyperactivity. Surprisingly, DRNGAD2 neurons were paradoxically wakefulness-active and were further activated by acute stress. Bidirectional manipulations revealed that DRNGAD2 neurons constrained the increase of wakefulness and arousal level in a mouse model of stress. Circuit-specific investigations demonstrated that DRNGAD2 neurons constrained wakefulness via inhibition of the wakefulness-promoting paraventricular thalamus. Therefore, the present study identified a wakefulness-constraining role DRNGAD2 neurons in acute stress conditions.


Asunto(s)
Núcleo Dorsal del Rafe , Vigilia , Ratones , Animales , Vigilia/fisiología , Núcleo Dorsal del Rafe/fisiología , Nivel de Alerta/fisiología , Mesencéfalo , Neuronas GABAérgicas/fisiología
2.
Neuron ; 112(1): 155-173.e8, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37944520

RESUMEN

The hypocretin (Hcrt) (also known as orexin) neuropeptidic wakefulness-promoting system is implicated in the regulation of spatial memory, but its specific role and mechanisms remain poorly understood. In this study, we revealed the innervation of the medial entorhinal cortex (MEC) by Hcrt neurons in mice. Using the genetically encoded G-protein-coupled receptor activation-based Hcrt sensor, we observed a significant increase in Hcrt levels in the MEC during novel object-place exploration. We identified the function of Hcrt at presynaptic glutamatergic terminals, where it recruits fast-spiking parvalbumin-positive neurons and promotes gamma oscillations. Bidirectional manipulations of Hcrt neurons' projections from the lateral hypothalamus (LHHcrt) to MEC revealed the essential role of this pathway in regulating object-place memory encoding, but not recall, through the modulation of gamma oscillations. Our findings highlight the significance of the LHHcrt-MEC circuitry in supporting spatial memory and reveal a unique neural basis for the hypothalamic regulation of spatial memory.


Asunto(s)
Hipotálamo , Memoria Espacial , Ratones , Animales , Orexinas/metabolismo , Hipotálamo/metabolismo , Neuronas/fisiología , Área Hipotalámica Lateral/fisiología
3.
Adv Sci (Weinh) ; 10(15): e2300189, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36961096

RESUMEN

Sevoflurane has been the most widely used inhaled anesthetics with a favorable recovery profile; however, the precise mechanisms underlying its anesthetic action are still not completely understood. Here the authors show that sevoflurane activates a cluster of urocortin 1 (UCN1+ )/cocaine- and amphetamine-regulated transcript (CART+ ) neurons in the midbrain involved in its anesthesia. Furthermore, growth hormone secretagogue receptor (GHSR) is highly enriched in sevoflurane-activated UCN1+ /CART+ cells and is necessary for sleep induction. Blockade of GHSR abolishes the excitatory effect of sevoflurane on UCN1+ /CART+ neurons and attenuates its anesthetic effect. Collectively, their data suggest that anesthetic action of sevoflurane necessitates the GHSR activation in midbrain UCN1+ /CART+ neurons, which provides a novel target including the nucleus and receptor in the field of anesthesia.


Asunto(s)
Anestesia , Mesencéfalo , Sevoflurano/farmacología , Urocortinas , Sueño
4.
Cell Rep ; 41(11): 111824, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516774

RESUMEN

Heightened wakefulness in response to stressors is essential for survival but can also lead to sleep disorders like insomnia. The paraventricular thalamus (PVT) is both a critical thalamic area for wakefulness and a stress-sensitive brain region. However, whether the PVT and its neural circuitries are involved in controlling wakefulness in stress conditions remains unknown. Here, we find that PVT neurons projecting to the central amygdala (CeA) are activated by different stressors. These neurons are wakefulness-active and increase their activities upon sleep to wakefulness transitions. Optogenetic activation of the PVT-CeA circuit evokes transitions from sleep to wakefulness, whereas selectively silencing the activity of this circuit decreases time spent in wakefulness. Specifically, chemogenetic inhibition of CeA-projecting PVT neurons not only alleviates stress responses but also attenuates the acute stress-induced increase of wakefulness. Thus, our results demonstrate that the PVT-CeA circuit controls physiological wakefulness and modulates acute stress-induced heightened wakefulness.


Asunto(s)
Núcleo Amigdalino Central , Vigilia , Tálamo/fisiología , Optogenética , Neuronas/fisiología , Vías Nerviosas/fisiología
6.
Science ; 362(6413): 429-434, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30361367

RESUMEN

Clinical observations indicate that the paramedian region of the thalamus is a critical node for controlling wakefulness. However, the specific nucleus and neural circuitry for this function remain unknown. Using in vivo fiber photometry or multichannel electrophysiological recordings in mice, we found that glutamatergic neurons of the paraventricular thalamus (PVT) exhibited high activities during wakefulness. Suppression of PVT neuronal activity caused a reduction in wakefulness, whereas activation of PVT neurons induced a transition from sleep to wakefulness and an acceleration of emergence from general anesthesia. Moreover, our findings indicate that the PVT-nucleus accumbens projections and hypocretin neurons in the lateral hypothalamus to PVT glutamatergic neurons' projections are the effector pathways for wakefulness control. These results demonstrate that the PVT is a key wakefulness-controlling nucleus in the thalamus.


Asunto(s)
Núcleos Talámicos de la Línea Media/fisiología , Vigilia/fisiología , Animales , Electrofisiología/métodos , Femenino , Ácido Glutámico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Neuronas/fisiología , Núcleo Accumbens/fisiología , Optogenética , Orexinas/genética , Fotometría/métodos , Proteínas Proto-Oncogénicas c-fos/metabolismo
7.
Neurosci Lett ; 668: 92-97, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29325715

RESUMEN

Orexins play a crucial role in the maintenance of arousal and are involved in the modulation of diverse physiological process, including cognitive function. Recent data have suggested that orexins are involved in learning and memory processes. The purpose of this study was to assess the effects of orexin deficiency on working memory. A delayed non-matching-to-place T-maze task was used to evaluate spatial working memory in mice lacking orexin prepro-peptide (orexin knockout; KO) and wild-type controls. We demonstrated that the number of correct choices in the orexin KO mice became lower than that of the controls over training. In an object exploration task, the controls explored the displaced object more than the mutants did, whereas this difference was not observed for the nondisplaced objects in either group. The orexin KO mice showed locomotor activity comparable to the control mice in terms of total distance traveled across training in both the object exploration task and the open field test. These findings indicate that the orexin system plays an important role in working memory of spatial cues.


Asunto(s)
Encéfalo/metabolismo , Disfunción Cognitiva/fisiopatología , Aprendizaje por Laberinto/fisiología , Memoria a Corto Plazo/fisiología , Actividad Motora/fisiología , Orexinas/fisiología , Memoria Espacial/fisiología , Animales , Conducta Animal/fisiología , Disfunción Cognitiva/etiología , Ratones , Ratones Noqueados , Orexinas/deficiencia , Orexinas/genética , Orexinas/metabolismo
8.
Cereb Cortex ; 28(7): 2439-2457, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28591796

RESUMEN

Encoding of spatial information in the superficial layers of the medial entorhinal cortex (sMEC) involves theta-modulated spiking and gamma oscillations, as well as spatially tuned grid cells and border cells. Little is known about the role of the arousal-promoting histaminergic system in the modification of information encoded in the sMEC in vivo, and how such histamine-regulated information correlates with behavioral functions. Here, we show that histamine upregulates the neural excitability of a significant proportion of neurons (16.32%, 39.18%, and 52.94% at 30 µM, 300 µM, and 3 mM, respectively) and increases local theta (4-12 Hz) and gamma power (low: 25-48 Hz; high: 60-120 Hz) in the sMEC, through activation of histamine receptor types 1 and 3. During spatial exploration, the strength of theta-modulated firing of putative principal neurons and high gamma oscillations is enhanced about 2-fold by histamine. The histamine-mediated increase of theta phase-locking of spikes and high gamma power is consistent with successful spatial recognition. These results, for the first time, reveal possible mechanisms involving the arousal-promoting histaminergic system in the modulation of spatial cognition.


Asunto(s)
Corteza Entorrinal/efectos de los fármacos , Ritmo Gamma/efectos de los fármacos , Histamina/farmacología , Reconocimiento Visual de Modelos/efectos de los fármacos , Percepción Espacial/efectos de los fármacos , Ritmo Teta/efectos de los fármacos , Animales , Biofisica , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Corteza Entorrinal/citología , Corteza Entorrinal/fisiología , Histamínicos/farmacología , Masculino , Neuronas/efectos de los fármacos , Neuronas/fisiología , Estimulación Luminosa , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Potenciales Sinápticos/efectos de los fármacos , Vigilia , Ácido gamma-Aminobutírico/metabolismo
9.
Neurosci Lett ; 621: 9-14, 2016 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-27048712

RESUMEN

Orexin neurons in the lateral hypothalamus (LH) play an important role in arousal, guaranteeing the execution of medial prefrontal cortex (mPFC)-related higher cognitive functions. The mPFC is anatomically and functionally a rostro-caudal hierarchy. Little is known about the innervation pattern, especially in the rostro-caudal model, from the arousal-promoting orexin system in the LH to the mPFC subregions, including the anterior cingulate cortex (AC), prelimbic cortex (PL) and infralimbic cortex (IL). Here, we used an anterograde tracing method and immunohistochemistry and found that the density of the LH, as well as orexinergic, fibers increased from the rostral part to the caudal part of the mPFC, regardless of AC, PL or IL. Similarly, the distribution of type 1 orexin receptors in the mPFC follows a rostro-caudal increasing gradient hierarchy. These data suggest a rostro-caudal hierarchy of LH orexinergic innervation to the mPFC. We hope to provide anatomical and morphological evidence for the regulation pattern of the arousal-promoting orexin system on the cognition-related mPFC system.


Asunto(s)
Área Hipotalámica Lateral/fisiología , Neuronas/fisiología , Orexinas/metabolismo , Corteza Prefrontal/fisiología , Animales , Masculino , Fibras Nerviosas/fisiología , Receptores de Orexina/metabolismo , Ratas Sprague-Dawley
10.
Neurosci Bull ; 30(5): 877-86, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24898402

RESUMEN

Orexin neurons within the lateral hypothalamus play a crucial role in the promotion and maintenance of arousal. Studies have strongly suggested that orexin neurons are an important target in endogenous adenosine-regulated sleep homeostasis. Orexin A induces a robust increase in the firing activity of orexin neurons, while adenosine has an inhibitory effect. Whether the excitatory action of orexins in the lateral hypothalamus actually promotes wakefulness and reverses the sleep-producing effect of adenosine in vivo is less clear. In this study, electroencephalographic and electromyographic recordings were used to investigate the effects of orexin A and adenosine on sleep and wakefulness in rats. We found that microinjection of orexin A into the lateral hypothalamus increased wakefulness with a concomitant reduction of sleep during the first 3 h of post-injection recording, and this was completely blocked by a selective antagonist for orexin receptor 1, SB 334867. The enhancement of wakefulness also occurred after application of the excitatory neurotransmitter glutamate in the first 3 h post-injection. However, in the presence of the NMDA receptor antagonist APV, orexin A did not induce any change of sleep and wakefulness in the first 3 h. Further, exogenous application of adenosine into the lateral hypothalamus induced a marked increase of sleep in the first 3-h post-injection. No significant change in sleep and wakefulness was detected after adenosine application followed by orexin A administration into the same brain area. These findings suggest that the sleep-promoting action of adenosine can be reversed by orexin A applied to the lateral hypothalamus, perhaps by exciting glutamatergic input to orexin neurons via the action of orexin receptor 1.


Asunto(s)
Adenosina/fisiología , Área Hipotalámica Lateral/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Neuropéptidos/fisiología , Sueño/fisiología , Vigilia/fisiología , Adenosina/farmacología , Animales , Glutamatos/metabolismo , Glutamatos/farmacología , Área Hipotalámica Lateral/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/farmacología , Masculino , Neuropéptidos/farmacología , Orexinas , Ratas , Ratas Sprague-Dawley , Sueño/efectos de los fármacos , Fases del Sueño/efectos de los fármacos , Fases del Sueño/fisiología , Vigilia/efectos de los fármacos
11.
Neurosci Lett ; 520(1): 92-7, 2012 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-22617634

RESUMEN

The arousal peptides, orexins, play an important role in regulating the function of the prefrontal cortex (PFC). Although orexins have been shown to increase the excitability of deep-layer neurons in the medial prefrontal cortex (mPFC), little is known about their effect on layer 2/3, the main intracortical processing layer. In this study, we investigated the effect of orexin-A on pyramidal neurons in layer 2/3 of the mPFC using whole-cell recordings in rat brain slices. We observed that orexin-A reversibly depolarized layer 2/3 pyramidal neurons through a postsynaptic action. This depolarization was concentration-dependent and mediated via orexin receptor 1. In voltage-clamp recordings, the orexin-A-induced current was reduced by the replacement of internal K(+) with Cs(+), removal of external Na(+), or an application of flufenamic acid (an inhibitor of nonselective cation channels). A blocker of Na(+)/Ca(2+) exchangers (SN-6) did not influence the excitatory effect of orexin-A. Moreover, the current induced by orexin-A reversed near E(k) when the external solution contained low levels of Na(+). When recording with Cs(+)-containing pipettes in normal external solution, the reversal potential of the current was approximately -25 mV. These data suggest an involvement of both K(+) channels and nonselective cation channels in the effect of orexin-A. The direct excitatory action of orexin-A on layer 2/3 mPFC neurons may contribute to the modulation of PFC activity, and play a role in cognitive arousal.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/fisiología , Canales Iónicos/fisiología , Neuropéptidos/fisiología , Corteza Prefrontal/fisiología , Células Piramidales/fisiología , Animales , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular/farmacología , Neuropéptidos/farmacología , Receptores de Orexina , Orexinas , Técnicas de Placa-Clamp , Canales de Potasio/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Ratas , Ratas Wistar , Receptores Acoplados a Proteínas G/fisiología , Receptores de Neuropéptido/fisiología , Intercambiador de Sodio-Calcio/fisiología
12.
Neuropharmacology ; 62(2): 775-83, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21924278

RESUMEN

The key role of the hypothalamic neuropeptides orexins in maintenance and promotion of arousal has been well established in normal mammalian animals, but whether orexins exert arousal effects under pathological condition such as coma was little studied. In this study, a model of unconscious rats induced by acute alcohol intoxication was used to examine the effects of orexins through intracerebroventricular injection. The results revealed that either orexin A or orexin B induced decrease of duration of loss of right reflex in alcohol-induced unconscious rats. In the presence of the selective orexin receptor 1 antagonist SB 334867 and orexin receptor 2 antagonist TCS OX2 29, the excitatory action of orexin A was completely blocked. Our data further presented that orexin A also induced reduction of delta power in EEG in these rats. Single-unit recording experiment in vivo demonstrated that orexin A could evoke increase of firing activity of prefrontal cortex neurons in unconscious rats. This excitation was completely inhibited by an H(1) receptor antagonist, pyrilamine, whereas application of α(1)-adrenoreceptor antagonist prazosin or 5-HT(2) selective receptor antagonist ritanserin partially attenuated the excitatory effects of orexin A on these neurons. Consistently, the results of EEG recordings showed that microinjection of pyrilamine, prazosin, or ritanserin suppressed reduction of delta power in EEG induced by orexin A on unconscious rats. Thus, these data suggest that orexins exert arousal effects on alcohol-induced unconscious rats by the promotion of cortical activity through activation of histaminergic, noradrenergic and serotonergic systems. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.


Asunto(s)
Intoxicación Alcohólica/complicaciones , Nivel de Alerta/efectos de los fármacos , Coma/tratamiento farmacológico , Coma/etiología , Estado de Conciencia/efectos de los fármacos , Etanol/efectos adversos , Péptidos y Proteínas de Señalización Intracelular/uso terapéutico , Neuropéptidos/uso terapéutico , Animales , Nivel de Alerta/fisiología , Benzoxazoles/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Coma/inducido químicamente , Electroencefalografía , Femenino , Péptidos y Proteínas de Señalización Intracelular/farmacología , Naftiridinas , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuropéptidos/farmacología , Orexinas , Prazosina/farmacología , Pirilamina/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Neuropéptido/antagonistas & inhibidores , Ritanserina , Urea/análogos & derivados , Urea/farmacología
13.
Brain Res ; 1401: 52-8, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21663896

RESUMEN

Short-term sleep deprivation (SD) has been shown to enhance cortical activity. However, alterations in the cellular excitability of cortical neurons following SD are not yet fully understood. The present study investigated the effects of 4-hour SD on pyramidal neurons in the prefrontal cortex (PFC) of rats using whole-cell patch-clamp recording. SD led to an increase in the initial slope of firing frequency-current curve and a decrease in frequency adaptation, which were reversed by recovery sleep (RS). Correspondingly, the total afterhyperpolarization (AHP) was reduced in the SD group and returned in the RS group. Furthermore, the component of AHP changed after SD seemed to be sensitive to Ca(2+). These observations indicate an enhancement in intrinsic excitability due to short-term SD, and suggest a role for Ca(2+)-dependent AHP in this change. The findings of the present study may provide a possible explanation for the SD-induced increase in cortical activity.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas/fisiología , Corteza Prefrontal/patología , Privación de Sueño/patología , Privación de Sueño/fisiopatología , Animales , Corteza Prefrontal/fisiología , Células Piramidales/patología , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
14.
Hippocampus ; 21(3): 265-80, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20054814

RESUMEN

Stellate neurons in layer II entorhinal cortex (EC) provide the main output from the EC to the hippocampus. It is believed that adenosine plays a crucial role in neuronal excitability and synaptic transmission in the CNS, however, the function of adenosine in the EC is still elusive. Here, the data reported showed that adenosine hyperpolarized stellate neurons in a concentration-dependent manner, accompanied by a decrease in firing frequency. This effect corresponded to the inhibition of the hyperpolarization-activated, cation nonselective (HCN) channels. Surprisingly, the adenosine-induced inhibition was blocked by 3 µM 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective A(1) receptor antagonists, but not by 10 µM 3,7-dimethyl-1-propargylxanthine (DMPX), a selective A(2) receptor antagonists, indicating that activation of adenosine A(1) receptors were responsible for the direct inhibition. In addition, adenosine reduced the frequency but not the amplitude of miniature EPSCs and IPSCs, suggesting that the global depression of glutamatergic and GABAergic transmission is mediated by a decrease in glutamate and GABA release, respectively. Again the presynaptic site of action was mediated by adenosine A(1) receptors. Furthermore, inhibition of spontaneous glutamate and GABA release by adenosine A(1) receptor activation was mediated by voltage-dependent Ca(2+) channels and extracellular Ca(2+) . Therefore, these findings revealed direct and indirect mechanisms by which activation of adenosine A(1) receptors on the cell bodies of stellate neurons and on the presynaptic terminals could regulate the excitability of these neurons.


Asunto(s)
Adenosina , Corteza Entorrinal/metabolismo , Inhibición Neural/fisiología , Receptor de Adenosina A1/metabolismo , Transmisión Sináptica/fisiología , Adenosina/metabolismo , Adenosina/farmacología , Antagonistas del Receptor de Adenosina A1/farmacología , Antagonistas del Receptor de Adenosina A2/farmacología , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Corteza Entorrinal/citología , Corteza Entorrinal/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico/metabolismo , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A1/efectos de los fármacos , Receptores de Adenosina A2/efectos de los fármacos , Receptores de Adenosina A2/metabolismo , Transmisión Sináptica/efectos de los fármacos , Teobromina/análogos & derivados , Teobromina/farmacología , Xantinas/farmacología , Ácido gamma-Aminobutírico/metabolismo
15.
Cereb Cortex ; 20(7): 1756-67, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19915095

RESUMEN

The hyperpolarization-activated/cyclic nucleotide (HCN)-gated channels make important contributions to neural excitability. In prefrontal cortex, HCN channels are localized on the distal dendrites of layer V pyramidal neurons and decrease neural excitability when they are open. In the present study, using whole-cell voltage clamp recordings, the effect of an arousal peptide, orexin A, on HCN currents in layer V pyramidal neurons from mouse prelimbic cortex (PL), the homolog of the prefrontal cortex was investigated. The results demonstrated that orexin A suppressed HCN currents and shifted their activation curve to a more negative direction. This action of orexin A was blocked by SB334867, an orexin receptor 1 (OXR1) blocker and bisindolylmaleimide, a protein kinase C (PKC) inhibitor, indicating the involvement of OXR1 and PKC. The excitatory effect of orexin A on PL pyramidal neurons was enhanced when HCN currents were diminished, while attenuated when HCN currents were enlarged. In summary, orexin A inhibits HCN currents and enhances excitability of pyramidal neurons in PL, which may contribute to arousal and cognition.


Asunto(s)
Corteza Cerebral/citología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología , Neuropéptidos/farmacología , Neurotransmisores/farmacología , Células Piramidales/efectos de los fármacos , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Animales , Animales Recién Nacidos , Benzoxazoles/farmacología , Biofisica/métodos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Estimulación Eléctrica/métodos , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos , Naftiridinas , Receptores de Orexina , Orexinas , Técnicas de Placa-Clamp , Pirimidinas/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Urea/análogos & derivados , Urea/farmacología
16.
Neurosci Lett ; 399(1-2): 101-5, 2006 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-16495001

RESUMEN

It is widely known that hypocretins are essential for the regulation of wakefulness. Our recent reports have found that hypocretin-1 shows a direct postsynaptic excitatory effect on rat prefrontal cortex (PFC) pyramidal neurons. It remains unclear whether hypocretin-1 may interact with two classical neurotransmitter systems, glutamate and gamma-aminobutyric acid (GABA) in rat PFC. For this reason, we here investigated the modulatory actions of hypocretin-1 with these two transmitters on freshly isolated PFC pyramidal neurons using whole-cell patch-clamp recordings. We found that coadministration of hypocretin-1 and glutamate showed a synergistic effect on the recorded cells, and hypocretin-1 could excite the neurons even if GABA was present. Thus, our data suggest that there may be hypocretin-glutamate and hypocretin-GABA interactions in the PFC.


Asunto(s)
Lóbulo Frontal/fisiología , Ácido Glutámico/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Neuropéptidos/fisiología , Células Piramidales/fisiología , Ácido gamma-Aminobutírico/fisiología , Potenciales de Acción , Animales , Lóbulo Frontal/citología , Ácido Glutámico/farmacología , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular/farmacología , Neuropéptidos/farmacología , Orexinas , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Ratas , Ratas Wistar , Ácido gamma-Aminobutírico/farmacología
17.
J Neurosci Res ; 82(5): 729-36, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16247802

RESUMEN

Hypocretins are crucial for the regulation of wakefulness by the excitatory actions on multiple subcortical arousal systems. To date, there is little information about the direct postsynaptic excitatory effects of hypocretins on the neurons in prefrontal cortex (PFC), which is important for higher cognitive functions and is correlated with level of wakefulness. In this study, we tested the excitatory effects of hypocretin-1 on acutely isolated PFC pyramidal neurons of rats and studied the possible ionic mechanisms by using whole-cell patch-clamp techniques. Puff application of hypocretin-1 caused a dose-dependent excitation. Further observations that perfusion of Ca2+-free artificial cerebrospinal fluid did not influence the depolarizing effects of hypocretin-1, in conjunction with the findings that hypocretin-1 could decrease net whole-cell K+ currents, demonstrate that the excitatory effects of hypocretin-1 on PFC neurons are mediated by the inhibition of K+ currents but not Ca2+ influx. Finally, the decrease in K+ currents induced by hypocretin-1 was abolished by a protein kinase C (PKC) inhibitor (BIS II) or a phospholipase C (PLC) inhibitor (D609), suggesting that PKC and PLC appear to be involved in mediating the inhibitory effects of hypocretin-1 on K+ currents. These results indicate that hypocretin-1 exerts a postsynaptic excitatory action on PFC neurons through the inhibition of K+ currents, which probably results from activation of PKC and PLC signaling pathways.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuropéptidos/metabolismo , Canales de Potasio/metabolismo , Corteza Prefrontal/metabolismo , Células Piramidales/metabolismo , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Canales de Calcio/efectos de los fármacos , Canales de Calcio/fisiología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/farmacología , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Neuropéptidos/farmacología , Orexinas , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Canales de Potasio/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Células Piramidales/efectos de los fármacos , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Transmisión Sináptica/efectos de los fármacos , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/metabolismo
18.
Neuroreport ; 16(13): 1529-33, 2005 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-16110284

RESUMEN

We have investigated the direct excitatory effects of hypocretin-1 on acutely isolated prefrontal cortical pyramidal neurons and explored the signaling mechanisms of these actions. Puff application of hypocretin-1 caused an excitation in the recorded neurons. These effects of hypocretin-1 were abolished by a phospholipase C inhibitor D609, demonstrating that phospholipase C mediates the actions of hypocretin-1. A specific protein kinase C inhibitor, bisindolylmaleimide II, blocked the excitatory actions of hypocretin-1, suggesting that protein kinase C plays a key role. Finally, protein kinase A inhibitor applied intracellularly did not affect the responses. These results indicate that hypocretin-1 excites prefrontal neurons by activation of phospholipase C and protein kinase C pathways, but not protein kinase A.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/farmacología , Neuropéptidos/farmacología , Corteza Prefrontal/citología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Transducción de Señal/fisiología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Técnicas In Vitro , Orexinas , Técnicas de Placa-Clamp , Proteína Quinasa C/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Fosfolipasas de Tipo C/metabolismo
19.
Neuroreport ; 16(7): 783-6, 2005 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-15858425

RESUMEN

We have investigated the effect of orexin A on the intracellular free calcium concentration ([Ca2+]i) in primary cultured cortical neurons and explored the exact mechanisms of orexin A-evoked changes of [Ca2+]i. In the present study, changes of [Ca2+]i induced by orexin A in primary cultured cortical neurons were first detected by confocal laser scanning microscopy using Ca2+-sensitive dye fluo-4 as a novel calcium fluorescent probe. Our results showed that 1-0.1 microM orexin A induced the increase in [Ca2+]i in cortical neurons. The increase in [Ca2+]i by acute application of orexin A occurred in a dose-dependent manner. Orexin A-induced increase in [Ca2+]i was not observed under the condition of Ca2+-free Dulbecco's modified Eagle's medium. Pretreatment on the cells with 1 microM thapsigargin did not block orexin A-evoked response. These findings first illuminated the fact that orexin A-induced increase in [Ca2+]i may be mainly from extracellular calcium influx in cortical neurons.


Asunto(s)
Calcio/metabolismo , Corteza Cerebral/citología , Péptidos y Proteínas de Señalización Intracelular/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuropéptidos/farmacología , Compuestos de Anilina , Animales , Animales Recién Nacidos , Células Cultivadas , Colorantes Fluorescentes , Microscopía Confocal , Orexinas , Ratas , Ratas Wistar , Vigilia/fisiología , Xantenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...